If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2+73z+30=0
a = 7; b = 73; c = +30;
Δ = b2-4ac
Δ = 732-4·7·30
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-67}{2*7}=\frac{-140}{14} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+67}{2*7}=\frac{-6}{14} =-3/7 $
| 12.97+0.15h=13.72+0.15h | | 11x−7=26 | | 0.5(b+2)+3b=−1 | | 2x²-4x+9=0 | | 360-83=m | | 10=22-2m | | 2×+2y=800 | | 1+10x=201 | | (3x+7)(2x–4)=0 | | 8x-3+2x-15=9x-18 | | -7y^2-40y+12=0 | | 4x=7x-2=5x-10 | | 2x2=48 | | .5(b+2)+3b=−1 | | x+0.9=-5.7 | | c+25/8=5 | | -3.3+u/7=-20.8 | | 5v-5=-60 | | 7(r-90)=56 | | 60.75+9=p | | x/16=55/40 | | -3.3+u/7=20.8 | | 22=6b–8 | | 6x+8=8+x | | y=23.1(492.3)+483.2 | | 5+9x=-22 | | 8m^2-5m=0 | | y=23.1+483.2 | | v/7+3=4 | | -50=1+3x | | 39=6x+7x | | 12=-3v-9 |